Բաժանման հուշումներ և հնարքներ

Բաժանման հուշումներ և հնարքներ

Նկարեք նկար

Եթե ​​դուք նոր եք սկսում բաժանումից, նկար նկարելը կարող է օգնել ձեզ ավելի լավ հասկանալ բաժանման խնդիրները: Նախ նկարեք նույն թվով տուփեր, որքան բաժանարարի համարը: Դրանից հետո տեղափոխեք տուփից տուփ ՝ ավելացնելով մի կետ, որը ներկայացնում է ընդհանուր շահաբաժնից 1-ը: Պատասխանն է այն թիվը, որը դուք ունեք յուրաքանչյուր վանդակում:

Ստորև նկարում մենք փորձում ենք լուծել 20 ÷ 4 =?: Մենք նկարել ենք 4 տուփ: Մենք սկսում ենք 20 կետերը միանգամից մեկ տուփ դնել: Յուրաքանչյուր տուփում մենք հայտնվում ենք 5 կետով: Պատասխանը 5 է:





Ստուգեք ձեր պատասխանը բազմապատկելով



Եթե ​​գիտեք, թե ինչպես լավ բազմապատկել, ապա կարող եք օգտագործել սա ՝ ձեր պատասխանները ստուգելու համար: Պարզապես վերցրեք տրիչը, կամ պատասխանեք, և բազմապատկեք այն բաժանարարի վրա: Դուք պետք է շահաբաժին ստանաք:

Բաժանում հանումով

Բաժանում կատարելու մեկ այլ տարբերակ է բաժանարարը շահաբաժնից հանել, մինչև հասնեք պատասխանին: Ահա մի օրինակ.

532 ÷ 97 =?



Երբ հասնեք մի կետի, երբ 97-ով հանելը ձեզ տալիս է պատասխան, որը 97-ից պակաս է, ապա կավարտեք: Պարզապես հաշվեք 97-ի հանած անգամների քանակը, դա ձեր պատասխանն է: Վերջին հանումից մնացած թիվը ձեր մնացածն է:

Բաժանել երեք հնարքի միջոցով

Սա զվարճալի հնարք է: Եթե ​​թվերի թվանշանների հանրագումարը կարելի է բաժանել երեքի, ապա այդ թիվը նույնպես կարող է:

Օրինակներ.

1) 12 թիվը. 1 + 2 = 3 և 12 ÷ 3 = 4 թվանշանները:

2) 1707 թիվը. 1 + 7 + 0 + 7 = 15 թվանշանները, որը բաժանվում է 3-ի: Ստացվում է, որ 1707 ÷ 3 = 569:

3) 25533708 = 2 + 5 + 5 + 3 + 3 + 7 + 0 + 8 = 33 թիվը, որը ÷ 3 = 11. Ստացվում է, որ 25533708 ÷ 3 = 8511236:

Ավելին բաժանեք համարների հնարքներով
  • Բաժանել 1-ի վրա - Ամեն անգամ, երբ բաժանես 1-ի, պատասխանը նույնն է, ինչ շահաբաժինը:
  • Բաժանել 2-ի վրա - Եթե թվի վերջին նիշը զույգ է, ապա ամբողջ թիվը բաժանվում է 2.-ի:
  • Բաժանել 4-ի վրա - Եթե վերջին երկու նիշերը բաժանվում են 4-ի, ապա ամբողջ թիվը բաժանվում է 4-ի: Օրինակ, մենք գիտենք, որ 14237732- ը կարող է հավասարաչափ բաժանվել 4-ի, քանի որ 32 ÷ 4 = 8:
  • Բաժանել 5-ի վրա - Եթե թիվը ավարտվում է 5-ով կամ 0-ով, ապա այն բաժանվում է 5-ի:
  • Բաժանել 6-ի վրա - Եթե վերևում բաժանելու 2-ի և վերևի 3-ի բաժանելու կանոնները ճիշտ են, ապա թիվը բաժանվում է 6-ի:
  • Բաժանել 9-ի վրա - Նման է բաժանումը 3-ի կանոնի, եթե բոլոր թվանշանների գումարը բաժանվում է 9-ի, ապա ամբողջ թիվը բաժանվում է 9-ի: Օրինակ, մենք գիտենք, որ 18332145- ը բաժանվում է 9-ի, քանի որ 1 + 8 + 3 + 3 + 2 + 1 + 4 + 5 = 27 և 27 ÷ 9 = 3:
  • Բաժանել 10-ի վրա - Եթե թիվը ավարտվում է 0-ով, ապա այն բաժանվում է 10-ի:


Մաթեմատիկայի առաջադեմ երեխաների առարկաներ

Բազմապատկում
Բազմապատկման ներածություն
Երկար բազմապատկում
Բազմապատկման խորհուրդներ և հնարքներ

Բաժին
Ներածություն բաժնի
Երկար բաժանում
Բաժանման հուշումներ և հնարքներ

Կոտորակներ
Կոտորակների ներածություն
Համարժեք կոտորակներ
Կոտորակների պարզեցում և նվազեցում
Կոտորակների գումարումը և հանումը
Կոտորակների բազմապատկում և բաժանում

Տասնորդականներ
Տասնորդական արժեքի արժեքը
Տասնորդականների գումարում և հանում
Տասնորդականների բազմապատկում և բաժանում
Վիճակագրություն
Միջին, միջին, ռեժիմ և միջակայք
Նկարների գծապատկերներ

Հանրահաշիվ
Գործողությունների կարգը
Բացահայտիչներ
Գործակիցները
Գործակիցները, կոտորակները և տոկոսները

Երկրաչափություն
Պոլիգոններ
Քառանկյուններ
Եռանկյունիներ
Պյութագորասի թեորեմ
Շրջանակ
Պարագիծ
Մակերեսը

Սխալ
Մաթեմատիկայի հիմնական օրենքներ
Պարզ թվեր
Հռոմեական թվանշաններ
Երկուական թվեր